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Abstract. Lobula Giant Movement Detectors (LGMD1 and LGMD2),
neurons located in the locust's optic lobe, are specialized in detecting ap-
proaching objects (looming perception) and have been widely modeled
for integration into mobile robots. In bio-inspired robotic implementa-
tions of LGMD, inhibitory processes are crucial, as they help main-
tain selective responses to looming stimuli, enabling reliable collision
avoidance. However, current robotic implementations of LGMD models
often struggle with nearby translating movements, frequently generat-
ing false-positive collision alerts. Recent biological studies have iden-
ti�ed trans-medulla a�erent (TmA) neurons within the LGMD den-
dritic region, which may act as a form of self-inhibition (SI). These neu-
rons rapidly suppress intermediate neuronal activities in situ within the
LGMD structure, e�ectively complementing lateral inhibition (LI). To-
gether, SI and LI enhance the speci�city of looming responses, reducing
interference from translating motions. Despite their biological signi�-
cance, these mechanisms have yet to be e�ectively modeled and tested
within arti�cial robotic vision systems. In response, this study introduces
a biomimetic visual neural model that incorporates SI and coordinates it
with LI during looming perception. The proposed neural computation ex-
plicitly activates SI during initial looming events and during translating
movements by leveraging spatial correlations within segmented, local-
ized image areas, de�ned as the local visual �eld (LVF). This innovative
model has been integrated into a bio-inspired micro-robot, named Colias,
serving as its sole collision detection mechanism. Both o�ine evaluations
and real-world robotic tests demonstrate the e�cacy of the biomimetic
model in distinguishing looming from translating motions. Consequently,
the robot exhibits signi�cantly enhanced collision detection selectivity,
closely resembling the capabilities observed in biological organisms.

Keywords: Biomimetic visual model · LGMD · Self-inhibition · Lateral
inhibition · Collision detection

1 Introduction

Robust collision detection is essential for safe and e�cient navigation in au-
tonomous mobile systems. Biologically inspired visual systems often provide el-
egant and e�cient solutions to collision detection challenges encountered by
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intelligent robots. Despite their relatively small brains and limited computa-
tional resources, insects possess impressive neural capabilities for detecting and
responding to collisions during �ight. Locusts, for instance, can navigate vast
distances without collisions, even under challenging low-light conditions [1, 2].
Central to this capability are two specialized neurons located in the locust visual
system, known as Lobula Giant Movement Detectors (LGMD1 and LGMD2).
These neurons exhibit strong sensitivity to objects rapidly approaching on a col-
lision course, while e�ectively ignoring irrelevant motions, such as lateral trans-
lations [3�6]. Thus, the biological principles underlying LGMD neurons and their
neural circuitry o�er a promising foundation for developing bio-inspired collision
detection technologies in robotics.

Inhibitory neural processes are central in shaping the selectivity of loom-
sensitive neurons by interacting spatially and temporally with excitatory sig-
nals [7�10]. In computational models of these systems, two primary inhibitory
mechanisms are commonly simulated. The �rst, lateral inhibition (LI), enhances
spatial resolution and contrast, sharpens the perception of looming object bound-
aries, and suppresses excessive responses from neighboring neurons [3, 9�12].
The second mechanism, feed-forward inhibition (FFI), reduces neuronal activ-
ity when an excessive number of pre-synaptic neurons activate simultaneously,
thereby stabilizing the LGMD neuron and preventing over-stimulation [3,9�11].
These inhibitory processes have been e�ectively incorporated into neural net-
work models capable of processing visual inputs, whether derived from o�ine
recordings or online sensory streams from robot vision systems [13,14].

However, current bio-inspired robotic implementations of LGMD models
struggle to e�ectively suppress responses to nearby translating motions, particu-
larly in complex and dynamic visual environments, often resulting in false alarms,
as mentioned in a recent review [14]. Recent biological research has uncovered
trans-medulla a�erent (TmA) neurons within the LGMD's presynaptic neuropil,
functioning likely as a distinct form of inhibition known as self-inhibition (SI) [6].
Unlike other inhibitory mechanisms, SI has been studied explicitly concerning its
causal role in shaping neuronal responses. Early investigations into locust visual
processing revealed that SI modulates neuronal activity by responding to a neu-
ron's own excitation, thus enhancing sensitivity to sudden changes or transient
visual signals while suppressing background interference [15]. Further research
by Rind et al. demonstrated that SI exerts its strongest e�ects during the ini-
tial phase of an object's approach and when the translating object's image size
remains relatively small [6]. Conversely, LI emerges more gradually, becoming
prominent when the image expands signi�cantly near the end of an approaching
event [6]. The coordinated interaction between SI and LI thus sharpens neuronal
selectivity for looming rather than translating stimuli, highlighting a promising
pathway for advancing biomimetic, LGMD-based robotic vision systems.

This study, for the �rst time, integrated SI and coordinates it with LI in
computational models of looming perception. We evaluated the e�ectiveness of
this combined inhibitory mechanism within two neural network models inspired
by LGMD1 and LGMD2 neurons [9,10]. Speci�cally, SI is implemented by ana-
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lyzing spatial correlations within segmented local visual �elds (LVF), each cor-
responding to a speci�c region of the visual input. The SI mechanism rapidly
reduces local excitation when the LVF activation remains below a prede�ned
threshold, operating earlier than LI. Conversely, during genuine looming events,
the LVF becomes strongly activated, diminishing SI's in�uence and allowing LI
to dominate the inhibitory interaction, sharpening the neuron's looming-speci�c
response.

To assess the e�ectiveness and e�ciency of the proposed SI mechanism, we
conducted both o�ine evaluations and online robot experiments, comparing our
model to original LGMD1 and LGMD2 implementations. The experimental re-
sults underscored the e�cacy of incorporating and coordinating SI with LI in
computational models of looming-sensitive neurons. Although biological stud-
ies on SI remain relatively limited, our simulations clearly demonstrated that
integrating SI signi�cantly enhances collision selectivity in both LGMD1 and
LGMD2 neural models. In practical tests within an experimental arena, the
micro-robot exhibited reduced sensitivity to translating movements while main-
taining robust and reliable collision detection capabilities.

2 Methods

In this section, the proposed visual neural model will be presented in detail with
emphasis laid on how the proposed SI mechanism is incorporated. Speci�cally,
we elaborated on how the SI and LI are coordinated in LGMD1 and LGMD2
models, respectively, as illustrated in Fig. 1. The full description of network
processing except the proposed SI algorithm can be found in [9,10]. We present
the mathematical equations in discrete forms, which can be programmed directly
into robotic systems.

2.1 The proposed SI model in LGMD1-based neural network

The �rst layer of LGMD1 neural network consists of photoreceptors (P) ar-
ranged in a matrix, which capture the luminance of each pixel in an image.
The luminance change between successive frames of the image stream is com-
puted and forms the output of this layer [9, 10]. Let L(x, y, t) ∈ R3 represent
the pixel values of the input image, where x, y, and t denote spatial and tem-
poral locations, respectively. The output of this layer is de�ned as P(x, y, t) =
|L(x, y, t) − L(x, y, t − 1)|. The output of the P layer forms the input for three
separate cell types in the next layer. One type is called excitation cells, com-
puted as E(x, y, t) = P (x, y, t). LI cells, which mimic the functionality of lateral
inhibitions, a�ect their neighboring cells with a certain latency. In the LGMD1
model, the computation of LI is de�ned as follows:

Ê(x, y, t) = α1E(x, y, t) + (1− α1)Ê(x, y, t− 1), α1 = ∆t/(∆t+ τE) (1)

LI(x, y, t) =

1∑
i=−1

1∑
j=−1

Ê(x+ i, y + j, t) ·WLI(i+ 1, j + 1) (2)
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Fig. 1. Schematic of the LGMD1 and LGMD2 neural networks with the proposed SI
mechanism. (a) Photoreceptor (P) captures luminance change of the pixels in the �eld
of view, and then transmits the processed information to the partial neural network
(PNN) for processing. LGMD1 cell integrates the local excitations processed in the
PNN. (b) Visual information is split into ON/OFF parallel pathways with bias in the
OFF pathway to realize the speci�c selectivity of LGMD2. LGMD2 cell integrates the
local excitation processed in PNN. The proposed SI mechanism is incorprated into both
neural networks through computation in LVF. E: excitation. LI: lateral inhibition. S:
summation. LVF: local visual �led. SI: self-inhibition. TD: time delay unit. FFI (or
PM): feed-forward inhibition (or photoreceptor mediation). G: grouping.

WLI(i, j) denotes the local convolution matrix that is identical to the original
LGMD1 model in [10], which decides the in�uence by neighboring cells. tE and
∆t are two time constants, where tE represents the excitation delay, and ∆t is
the time interval between image frames.

As shown in Fig. 2, SI constitutes the third type of signal formed by the
output of P cells. These inputs are based on the average luminance variation
received from the LVF each subtending a certain image size. After a shorter
latency than LI, the SI can be calculated through the following equations.

P̂ (x, y, t) = α2P (x, y, t) + (1− α2)P̂ (x, y, t− 1), α2 = ∆t/(∆t+ τP ) (3)

LV F (r, c, t) =
( 0∑
i=−2

0∑
j=−2

P (3r + i, 3c+ j, t)
)
/9 (4)

SI(x, y, t) =

{∑1
i=−1

∑1
j=−1 P̂ (x+ i, y + j, t) ·WSI(i, j), if LV F (r, c, t) ⩽ γ1,

β1

∑1
i=−1

∑1
j=−1 P̂ (x+ i, y + j, t) ·WSI(i, j), otherwise

(5)

τP represents the photoreceptor delay, while LVF(r,c,t) denotes the average lu-

minance variation at the position (r,c)=
⌈
(x,y)
3

⌉
. γ1 denotes a small real number
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Fig. 2. The proposed SI mechanism operates by leveraging spatially distributed local
visual �elds (LVFs), with the strength of SI computed through spatial convolution
across these �elds. Each LVF comprises nine local SI units, where the activation level
of each unit is determined by the average neuronal activity within its respective LVF.

as a threshold gate, and β1 is a suppressive coe�cient. WSI represents the con-
volution kernel that satis�es

WSI =

 1
8

1
4

1
8

1
4 1 1

4
1
8

1
4

1
8

 (6)

Subsequently, as shown in Fig. 1, the LI, SI, and E are summed together in
S layer as

S(x, y, t) = E(x, y, t)− θ1 · SI(x, y, t)− θ2 · LI(x, y, t) (7)

θ1 and θ2 are the coe�cients with SI and LI, respectively. Finally, LGMD1 unit
integrates remaining excitation to form the membrane potential, normalized into
[0.5, 1) as

k(t) =

M∑
x=1

N∑
y=1

S(x, y, t), K(t) = 1/
(
1 + e

k(t)
α3MN

)
(8)

2.2 The proposed SI model in LGMD2-based neural network

We move on introducing how the proposed SI mechanism is integrated into
the LGMD2 neural network model. The main di�erence between LGMD1 and
LGMD2 is the signal bifurcation of photoreceptors into ON/OFF channels through
operations of half-wave recti�cation. The entire process can be de�ned as

P (x, y, t) = L(x, y, t)− L(x, y, t− 1) (9)

Pon(x, y, t) = [P (x, y, t)]+ + α4Pon(x, y, t− 1) (10)

Poff (x, y, t) = −[P (x, y, t)]− + α4Poff (x, y, t− 1) (11)
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Table 1. Parameters of the proposed method

Parameter Description Value

τE latency with LI-�ow 6 ∼ 10 (ms)
τP latency with SI-�ow 3 ∼ 5 (ms)
β1, β2 local biases in SI piecewise functions 0.01 ∼ 0.5
γ1 activation threshold of LVF 0.005 ∼ 3
θ1, θ3, θ4 coe�cients with SI calculating S 2 ∼ 5
M,N row, column of input image streams adaptable

[x]+ and [x]− denote max(0, x) and min(x, 0), respectively.
The subsequent E, I, and S layers are accordingly divided into ON/OFF

channels considering visual contrast change as shown in Fig. 1. The whole process
can be referred in the comparative model [9], which is omitted. The emphasis
herein is laid on incorporating the proposed SI mechanism to be coordinated
with LI. Considering visual contrast separated by ON/OFF channels, the LVF
is incorporated in each pathway. Taking the neural computation of ON channels
as examples, the SI is computed through

P̂on(x, y, t) = αonPon(x, y, t) + (1− αon)P̂on(x, y, t− 1) (12)

LV Fon(r, c, t) =
( 0∑
i=−2

0∑
j=−2

P̂on(3r + i, 3c+ j, t)
)
/9 (13)

SIon(x, y, t) =

{∑1
i=−1

∑1
j=−1 P̂on(x+ i, y + j, t) ·Won(i, j), if LV Fon(r, c, t) ⩽ γ1,

β2

∑1
i=−1

∑1
j=−1 P̂on(x+ i, y + j, t) ·Won(i, j), otherwise

(14)

Won =

 1
2 1 1

2
1 4 1
1
2 1 1

2

 (15)

The computations of SI in OFF channels conforms to those in ON channels.
The inhibitory bias in put forth in ON channels to suppress ON-contrast to
achieve the LGMD2's speci�c selectivity to OFF-contrast motions. Thus, the
convolution matrix in OFF channels is halved by Won.

After generating local ON/OFF excitation and inhibition, there are ON/OFF-
S units in both channels, that is,

Son(x, y, t) = [Eon(x, y, t)− θ3 ∗ SIon(x, y, t)− w1(t) ∗ LIon(x, y, t)]+ (16)

Soff (x, y, t) = [Eoff (x, y, t))− θ4 ∗ SIoff (x, y, t)− w2(t) ∗ LIoff (x, y, t)]+
(17)

θ3 and θ4 are coe�cients in the ON and OFF pathways, respectively. w1(t) and
w2(t) are time-varying coe�cients calculated by the adaptive inhibition mech-
anism presented in [9]. The remaining neural computation in LGMD2 network
also conforms to [9].

The parameter con�gurations employed in this study are summarized in Ta-
ble 1, while remaining parameters are consistent with those from the original
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Fig. 3. Results of comparative models challenged by a dark ball approaching and trans-
lating within a bright background in a real physical scene. (a) Looming stimulus shows
the increase of image size (dark pixels) during approaching over time. (b) Outputs of
LGMD1 and SLGMD1 (LGMD1 with SI mechanism), LGMD2 and SLGMD2 (LGMD2
with SI mechanism) in response to the looming stimulus. (c) Translating stimulus shows
the change of ball position over time and the image size (dark pixels) retains almost
consistent. (d) Response to the translating stimulus. The horizontal dashed line indi-
cates a prede�ned spiking threshold to compare with membrane potentials.

LGMD1 and LGMD2 models [9, 10]. All parameter values were selected to op-
timize the functional performance of the proposed biologically plausible mech-
anisms, particularly to emulate the SI characteristics. Notably, the convolution
matrices di�er between LI and SI. Speci�cally, the center element is set to zero
for LI, re�ecting a spatially distributed inhibition signal, whereas it is non-zero
for SI, enabling direct local suppression of neuronal excitation.

Currently, due to the relatively small parameter set involved, there is no
established learning approach for parameter selection. In o�ine experiments,
input resolution of 480 × 720 pixels was used. In online robotic experiments,
the mounted camera captures images at a resolution of 99× 72 pixels, with the
sampling frequency regulated at around 30 Hz.

3 Experimental Results and Analysis

Within this section, our experiments will be described to illustrate how the
coordination of SI and LI work to suppress translating motion in order to enhance
the selectivity in neural networks for collision detection. All the experiments can
be divided into two categories of o�ine and online tests. In the former category,
the input stimuli are divided into two types, one is a rolling ball movement in a
simple context and another is outdoor shooting scene. We compared the response
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Fig. 4. Results of comparative models challenged by natural motion stimuli. (a) Trans-
lating stimulus of a pedestrian passing by against dynamic natural background. (b)
Translating stimulus of a ground of people passing by. (c) Translating stimulus recorded
by an aerial robot shifting with the image size (dark pixels) changing over time.
(d),(e),(f) Outputs of LGMD1 and SLGMD1 (LGMD1 with SI mechanism), LGMD2
and SLGMD2 (LGMD2 with SI mechanism) in response to each translating stimulus.

and selectivity of the model with the original LGMD1 [10] and LGMD2 [9]
models without the proposed method.

3.1 Method evaluations

Firstly, the stimulus consists primarily of various motion patterns of a rolling ball
recorded in indoor laboratory settings. Compared to previous synthetic stimuli,
this setup introduces more background noise, and the rolling ball's speed is
not constant. In these tests, the proposed method was evaluated using a darker
object moving in depth against a bright background, incorporating both looming
and translating movements. As shown in Fig. 3, the LGMD with SI (SLGMD)
models e�ectively suppressed translating motion while maintaining a selective
response to approaching objects. Furthermore, the responses of SLGMD models
were noticeably smoother than those of the original models, suggesting that the
incorporation of SI could help reduce real-world noise (see Figures 3b and 3d).

Secondly, under outdoor translating stimulation, the comparative models
were tested using real-world visual stimuli recorded by camera. Compared to
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Fig. 5. Illustration of the experimental arena and the Colias micro-robot [16].

the structured indoor scenes, the outdoor environment introduced more complex
and dynamic backgrounds, making it more challenging for the model to recog-
nize object motion patterns. As shown in Fig. 4, both SLGMD1 and SLGMD2
models demonstrated a notable suppression of translating motions in these com-
plex settings compared to the original models. Additionally, Fig. 4 reveals that
the SLGMD2 model exhibited the best performance upon depressing translating
motions.

3.2 Robot online tests

This part presents the performance of the proposed biomimetic visual system as
embedded vision in Colias micro-robot [16]. The experiments were structured
sequentially with two primary objectives. Initially, the focus was on evaluating
the e�ectiveness of the combined SI and LI mechanisms in robotic systems for
suppressing translational motion (i.e., open-loop tests). Subsequently, the em-
phasis shifted toward assessing the robustness of fundamental collision detection
during autonomous robot navigation (i.e., closed-loop tests). Consequently, a di-
rect comparison of collision detection success rates with the original models was
not performed in this paper. The experimental settings of robot tests and arena
are collectively illustrated in Fig. 5.

Under open-loop tests, we employed a translating robot motion to test both
the proposed method and the original models. During these open-loop tests,
the motion unit of the stimulated robot was deactivated, and its responses to
the visual stimuli were collected and visualized (as shown in Fig. 6). These
experiments aimed to verify whether the coordination of SI and LI e�ectively
suppresses translating motion patterns, thereby enhancing selectivity of such
biomimetic system for looming objects.

Fig. 6 presents the statistical outputs of each model under repeated translat-
ing motion patterns. Both LGMD1 and LGMD2 original models exhibited strong
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Fig. 6. Statistical results of robot challenged through repeated open-loop translating
stimuli. (a) The experimental setup involves a robot translating at a speci�c distance
from the stimulated robot where the models are implemented. (b) Responses of com-
parative models including mean and variance of membrane potentials. The horizontal
dashed line indicates a prede�ned spiking threshold for collision detection.

responses to translational movements. While LGMD1 responded more strongly
than LGMD2, both models frequently misidenti�ed translational stimuli as po-
tential collisions, resulting in false alarms (membrane potential exceeding the
spiking threshold). In contrast, the SI-LI models (SLGMD1 and SLGMD2) ef-
fectively suppressed responses to translational movements by dynamically ad-
justing inhibition intensity within the LVF, aligning with results of previous
o�ine evaluations.

In arena tests, we conducted autonomous navigation with the results illus-
trated in Fig. 7. The robot con�guration aligned with the comparative study [9].
The results highlighted the e�cacy of coordinating SI and LI in robotic em-
bedded vision for real-time collision detection and avoidance in dynamic envi-
ronments encompassed by grating-patterned stimulation. Previous experiments
demonstrated that the proposed method signi�cantly depresses translating stim-
uli. In the arena tests, the robot maintained strong collision selectivity, navigat-
ing autonomously without human intervention and avoiding collisions within the
arena for an extended period. These �ndings also con�rmed that the modeling of
SI can be generalized to neural network-based robotic vision systems for collision
perception.

4 Discussions

The systematic experiments conducted in this study demonstrated that the pro-
posed biomimetic visual neural model works e�ectively to suppress translating
motion by coordinating SI and LI mechanisms, thereby enhancing the selec-
tivity of LGMD models for looming objects. Robot online experiments veri�ed
the e�ectiveness of SI mechanism integrated into embedded vision to reduce re-
sponsive action of robot to translating stimuli while maintaining the robustness



A biomimetic collision detection model 11

Fig. 7. Robot arena tests results of investigating collision detection capabilities: (a) The
LGMD1 model with the proposed SI mechanism is integrated into the embedded visual
module of Colias. The trajectories of robot over a 5-minute navigation are recorded
and depicted. The robot runs autonomously at around 4 cm/s, and turns randomly
to left or right when detecting potential collision. The arena walls display sine-grating
shifting pattern. (b) The case of LGMD2 model with the proposed SI mechanism under
same settings.

in collision detection during autonomous navigation. Additionally, the experi-
mental results con�rmed the generalization ability of the proposed SI algorithm
in neural networks for collision perception, as it worked e�ectively for either
LGMD1/LGMD2 models.

This modeling research also presents several interesting �ndings. First, Rind,
et al. identi�ed key di�erences between SI and LI: (1) SI takes e�ect earlier than
LI, and (2) SI is most e�ective when changes over visual �eld are minimal, while
LI dominates when luminance varies signi�cantly [6]. To implement these fea-
tures, this study incorporates di�erent delay parameters associated with SI/LI,
and utilizes down-sampled LVF to indicate local image size over time. Second,
Rind's research on SI-LI interaction found that while SI alone does not suppress
responses to looming, the coexistence of SI and LI enhances inhibition of looming
responses and e�ectively suppresses translating motion, maintaining selectivity
for looming objects [6]. This phenomenon was reproduced in the biomimetic
system demonstrated by our Colias robot, which validated the biological rele-
vance of the proposed method. At last, tests under realistic stimulus conditions
showed that the incorporation of SI resulted in smoother response outputs com-
pared to the original model, suggesting a potential noise reduction capability of
the proposed method.

Acknowledgment

This research was supported by the National Natural Science Foundation of
China under Grant No. 62376063. Qinbing Fu and Jiajun Huang share �rst
authorship. Corresponding author: Qinbing Fu (qifu@gzhu.edu.cn).



12 Q. Fu, et al.

References

1. E. Warrant and M. Dacke, �Visual navigation in nocturnal insects,� Physiology,
vol. 31, no. 3, pp. 182�192, 2016.

2. E. Baird, E. Kreiss, W. Wcislo, E. Warrant, and M. Dacke, �Nocturnal insects use
optic �ow for �ight control,� Biology Letters, vol. 7, no. 4, pp. 499�501, 2011.

3. F. C. Rind and D. Bramwell, �Neural network based on the input organization
of an identi�ed neuron signaling impending collision,� Journal of Neurophysiology,
vol. 75, no. 3, pp. 967�985, 1996.

4. M. O'shea and C. F. Rowell, �The neuronal basis of a sensory analyser, the acridid
movement detector system. ii. response decrement, convergence, and the nature of
the excitatory a�erents to the fan-like dendrites of the lgmd,� Journal of Experi-
mental Biology, vol. 65, no. 2, pp. 289�308, 1976.

5. P. J. Simmons and F. C. Rind, �Responses to object approach by a wide �eld
visual neurone, the lgmd2 of the locust: characterization and image cues,� Journal
of Comparative Physiology A, vol. 180, pp. 203�214, 1997.

6. F. C. Rind, S. Wernitznig, P. Pölt, A. Zankel, D. Gütl, J. Sztarker, and G. Leitinger,
�Two identi�ed looming detectors in the locust: ubiquitous lateral connections
among their inputs contribute to selective responses to looming objects,� Scienti�c
Reports, vol. 6, no. 1, p. 35525, 2016.

7. S. Bermúdez i Badia, U. Bernardet, and P. F. Verschure, �Non-linear neuronal
responses as an emergent property of a�erent networks: A case study of the locust
lobula giant movement detector,� PLoS Computational Biology, vol. 6, no. 3, p.
e1000701, 2010.

8. Q. Fu, C. Hu, J. Peng, and S. Yue, �Shaping the collision selectivity in a looming
sensitive neuron model with parallel on and o� pathways and spike frequency
adaptation,� Neural Networks, vol. 106, pp. 127�143, 2018.

9. Q. Fu, C. Hu, J. Peng, F. C. Rind, and S. Yue, �A robust collision perception visual
neural network with speci�c selectivity to darker objects,� IEEE Transactions on

Cybernetics, vol. 50, no. 12, pp. 5074�5088, 2019.
10. S. Yue and F. C. Rind, �Collision detection in complex dynamic scenes using an

LGMD-based visual neural network with feature enhancement,� IEEE Transac-

tions on Neural Networks, vol. 17, no. 3, pp. 705�716, 2006.
11. E. G. Olson, T. K. Wiens, and J. R. Gray, �A model of feedforward, global, and

lateral inhibition in the locust visual system predicts responses to looming stimuli,�
Biological Cybernetics, vol. 115, no. 3, pp. 245�265, 2021.

12. F. Lei, Z. Peng, M. Liu, J. Peng, V. Cutsuridis, and S. Yue, �A robust visual
system for looming cue detection against translating motion,� IEEE Transactions

on Neural Networks and Learning Systems, vol. 34, no. 11, pp. 8362�8376, 2022.
13. Q. Fu, H. Wang, C. Hu, and S. Yue, �Towards computational models and appli-

cations of insect visual systems for motion perception: A review,� Arti�cial Life,
vol. 25, no. 3, pp. 263�311, 2019.

14. Q. Fu, �Motion perception based on on/o� channels: a survey,� Neural Networks,
vol. 165, pp. 1�18, 2023.

15. D. Osorio, �Mechanisms of early visual processing in the medulla of the locust optic
lobe: how self-inhibition, spatial-pooling, and signal recti�cation contribute to the
properties of transient cells,� Visual Neuroscience, vol. 7, no. 4, pp. 345�355, 1991.

16. C. Hu, Q. Fu, and S. Yue, �Colias IV: The a�ordable micro robot platform with
bio-inspired vision,� in Annual Conference Towards Autonomous Robotic Systems.
Springer, 2018, pp. 197�208.


